## Strain-Induced Regioselectivities in Reactions of Benzyne Possessing a Fused Four-Membered Ring

Toshiyuki Hamura, Yousuke Ibusuki, Kazuhiko Sato, Takashi Matsumoto, Yoshihiro Osamura,<sup>†</sup> and Keisuke Suzuki<sup>\*</sup>

Department of Chemistry, Tokyo Institute of Technology, and CREST, Japan Science and Technology Corporation (JST), O-okayama, Meguro-ku, Tokyo 152-8551, Japan

ksuzuki@chem.titech.ac.jp

Received May 20, 2003

ABSTRACT



A fused four-membered ring has a powerful directing ability in effecting the regioselective reactions of benzyne with ketene silyl acetal, nucleophile, and  $\alpha$ -alkoxyfuran.

Regioselective reactions of substituted benzynes are of theoretical and synthetic interest.<sup>1</sup> An  $\alpha$ -alkoxy group within a benzyne species **I** exerts significant effects in determining the reaction course on processes such as nucleophilic addition,<sup>2</sup> [2 + 4] cycloaddition,<sup>3</sup> and [2 + 2] cycloaddition (Scheme 1).<sup>4</sup> A possible rationale to these aspects centers at the enhanced electrophilicity at C<sub>1</sub> relative to C<sub>2</sub> (see **A**) due to inductive electron withdrawal by the alkoxy group, rendering the C1 position the preferred site for initial interaction with nucleophilic reaction partners.<sup>5</sup>

We report here that fused four-membered rings, such as that in benzyne  $\mathbf{II}$ , exert an apparently similar directing effect

(3) Matsumoto, T.; Hosoya, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1991, 32, 6735-6736.

(4) (a) Hosoya, T.; Hasegawa, T.; Kuriyama, Y.; Matsumoto, T.; Suzuki, K. Synlett **1995**, 177–179. (b) Hosoya, T.; Hasegawa, T.; Kuriyama, Y.; Suzuki, K. Tetrahedron Lett. **1995**, *36*, 3377–3380. (c) Hosoya, T.; Hamura, T.; Kuriyama, Y.; Suzuki, K. Synlett **2000**, 520–522. (d) Hamura, T.; Hosoya, T.; Yamaguchi, H.; Kuriyama, Y.; Tanabe, M.; Miyamoto, M.; Yasui, Y.; Matsumoto, T.; Suzuki, K. Helv. Chim. Acta **2002**, *85*, 3589–3604.

10.1021/ol034877p CCC: \$25.00 © 2003 American Chemical Society Published on Web 09/06/2003 in these reactions. Judging from the absence of such an effect in the corresponding five- and six-membered rings (vide infra), it appears that the ring strain is the origin of such a directing effect.

Model substrate 5 was prepared by [2 + 2] cycloaddition of benzyne and ketene silyl acetal (KSA) 2a as shown in



## LETTERS 2003 Vol. 5, No. 20 3551–3554

**ORGANIC** 

<sup>&</sup>lt;sup>†</sup> Current address: Department of Chemistry, Rikkyo University, 3-34-1, Nishiikebukuro, Tokyo 171-8501, Japan.

<sup>(1)</sup> For reviews on arynes: (a) Hoffmann, R. W. *Dehydrobenzene and Cycloalkenes*; Academic: New York, 1967. (b) Kessar, S. V. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: Oxford, UK, 1991; Vol. 4, pp 483–515.

<sup>(2)</sup> For example: (a) Huisgen, R.; Rist, H. *Liebigs Ann. Chem.* **1955**, 594, 137–158. (b) Benkeser, R. A.; DeBoer, C. E. J. Org. Chem. **1956**, 21, 281–284. See also ref 1.



Scheme 2. Treatment of o-iodo triflate 1 with n-BuLi in the presence of KSA 2a gave a single cycloadduct 3, which was converted to ketone 4 by acid hydrolysis (81%, two steps). Regioselective iodination of phenol 4 followed by triflate formation and acetalization gave iodo triflate 5, which was used for the subsequent model study.



Scheme 3 shows the [2 + 2] cycloaddition of the benzyne generated from 5.<sup>6</sup> Upon treatment of 5 with *n*-BuLi in the presence of KSA 2a (THF, -78 °C, 5 min), the [2 + 2]cycloaddition proceeded cleanly and with high regioselectivity (31:1). The isomers were easily separable by silica gel preparative TLC to give mainly 6a and a small amount of 7a, respectively.<sup>7</sup> It is interesting that major cycloadduct 6a is the one with greater steric congestion with respect to the acetal moieties (cf. 7a).<sup>8</sup> Hydrolysis of 6a (aqueous KF, *n*-Bu<sub>4</sub>NCl, CH<sub>3</sub>CN) gave mono-one 8 in 95% yield, whose

3552

structure was unambiguously assigned by X-ray analysis (see Scheme 3).<sup>9</sup>

This regiochemical trend also applied to more oxygenated KSAs (Scheme 4). KSA **2b** with an additional methoxy



group gave cycloadduct **6b** almost exclusively (**6b**/**7b** = 56: 1).<sup>10</sup> The reaction was stereospecific, as the *E*/*Z* ratio of **2b** (*E*/*Z* = 1:28) was transferred to the relative stereochemistry of the four-membered ring in **6b** (cis/trans = 28:1).<sup>4b,11</sup> The fully oxygenated KSA **2c** showed even higher regioselectivity (**6c**/**7c** > 100:1), giving cycloadduct **6c** as essentially the only product.<sup>12</sup>

What is the origin of the regioselectivity? As a possible explanation, we initially envisaged that the steric effect posed by the ethylene acetal may play a key role, directing the initial interaction to occur at the distal site from the fourmembered ring as in **B** (Scheme 5). The zwitterion **C** or its classical congeners **III** and/or **IV** are considered for the formation of regioisomeric products **D** and **E**. In either case, preference of **III** over **IV** (the case of less oxygenated KSAs, **2a** and **2b**) by considering the relative stability of the positive

<sup>(5)</sup> While such initial HOMO–LUMO interaction directly correlates to the outcome for the nucleophile attack and the [2 + 4] cycloaddition, the [2 + 2] cycloaddition needs additional consideration in that the decisive step is the subsequent transformation of the zwitterion to the four-membered ring (Hoffmann–Fukui two-step mechanism); see: (a) Hayes, D. M.; Hoffmann, R. J. Phys. Chem. 1972, 76, 656–663. (b) Inagaki, S.; Fukui, K. Bull. Chem. Soc. Jpn. 1973, 46, 2240–2242.

<sup>(6)</sup> Pioneering study by vollhardt is noted for the generation and trapping of cyclobutabenzyne with furan; see: Hillard, R. L.; Vollhardt, K. P. C. Angew, Chem., Int. Ed. Engl. **1977**, *16*, 399–400.

<sup>(7)</sup> THF was the solvent of choice for good yield; cf. Et<sub>2</sub>O (**6a**, 62%; **7a**, 2%), toluene (**6a**, 56%; **7a**, 2%) and DME (**6a**, 59%; **7a**, 2%).

<sup>(8)</sup> Recently, a related report has appeared using ketene dialkyl acetals, although the yields were extremely low (20–30%) and the precise ratio of the regioisomeric cycloadducts was not described; see: Maurin, P.; I-Ouali, M.; Santelli, M. *Tetrahedron Lett.* **2001**, *42*, 8147–8149.

<sup>(9)</sup> We thank Ms. Sachiyo Kubo for X-ray analysis. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 218424.

<sup>(10)</sup> For preparation of KSA **2b**, see: Hattori, K.; Yamamoto, H. *Tetrahedron*, **1994**, *50*, 3099–3112. The ratio of cycloadducts **6b** and **7b** was determined by isolation by silica gel chromatography, and their structures were assigned by NMR study.

<sup>(11)</sup> Major regioisomer **6b** was composed of two stereoisomers with respect to the methoxy and siloxy groups; cis isomer *cis*-**6b** (71%) and trans isomer *trans*-**6b** (2.5%), whose stereochemistries were assigned by NOE study. The stereochemistry of minor regioisomer **7b** (1.3%) was not determined.

<sup>(12)</sup> Minor isomer **7c** could not be detected by high-field NMR analysis of the crude reaction mixtures. The ratio was determined after separating cycloadducts **6c** and **7c** by silica gel chromatography, and their structures were assigned by NMR study. See Supporting Information.



charge explains the regiochemical outcome.<sup>13</sup> Furthermore, the case of KSA **2c** (X = Y = OMe) deserves particular attention. Relevant here is the extent of cation stabilization offered by two "oxy" substituents: the cation **IIIc** is preferable to **IVc** because of the more electropositive nature of silicon in comparison with carbon.<sup>4c</sup>

Indeed, the preferred site of initial interaction was proven by nucleophilic addition to  $\mathbf{B}$  (Scheme 6). Upon treatment



of **5** with *n*-BuLi in the presence of piperidine, the nitrogen attack occurred selectively at the expected site, giving **9a** as a major product (12:1).<sup>14</sup> We reasoned that the inferior selectivity in comparison with the [2 + 2] cycloadditions (vide supra) might be due to the reduced steric bulk of nucleophile. Indeed, 2,2,6,6-tetramethylpiperidine reacted with an even higher selectivity (53:1) to give **9b**.

Such a rationale is basically fine with the acetal-containing benzyne. However, further experiments revealed that high, if not complete, regioselectivity was observed in the absence of the acetal, suggesting that *the crucial factor for determining the regioselectivity resides in the four-membered ring itself* rather than the steric bulkiness. Benzyne **12a**, lacking the ethylene acetal moiety, still showed an excellent regioselectivity (22:1), giving preferentially cycloadduct **13a** (Scheme 7).<sup>15</sup> Importantly, it was noted that the regioselectivity is the steric bulkines.



tivity dramatically decreased for the corresponding benzyne **12b** with a five-membered ring, giving a regioisomeric mixture of **13b** and its isomer **14b** (not shown) in 2.3:1 ratio.<sup>16,17</sup> Benzyne **12c**, possessing a six-membered ring, reacted with moderate selectivity (5.7:1) to give **13c** as a major product.<sup>18</sup>

Our attention was thus shifted to *the ring strain as the* origin of the regioselectivity. As described by Streitwieser and Finnegan,<sup>19</sup> the bridgehead carbon rehybridizes to use orbitals of higher p character in bonding to the strained ring, and hence, the remaining orbital has a higher s character. Thus,  $C_2$  is bound to an orbital of higher electronegativity, rendering  $C_1$  more electron deficient (see **12a** in Figure 1).<sup>20</sup> Indeed, calculations<sup>21</sup> showed that the  $C_1$  carbon in **12a** distal from the four-membered ring is apparently more positive

<sup>(13)</sup> Recently, a related reaction of cycloheptyne with 2,3-dihydropyran, which included a cyclopropylcarbene as an intermediate, was reported; see: Bachrach, S. M.; Gilbert, J. C.; Laird, D. W. J. Am. Chem. Soc. 2001, 123, 6706–6707. Also, in our case, computational studies showed that the structures of the initial adduct has considerable carbene-like character (unpublished results). For bookkeeping purposes, however, we described these regioselective features using the Hoffmann–Fukui zwitterionic mechanism.

<sup>(14)</sup> Presence of a proton source is indispensable for this reaction. If the reaction was performed under aprotic conditions [lithium piperidide (3.5 equiv), *n*-BuLi (1.5 equiv)], adduct **9** was not obtained. Instead, a complex mixture of products was observed.

<sup>(15)</sup> Although the regioisomers were not separable, the minor regioisomer **14a** (not shown) included in **13a** was identified by NMR.

<sup>(16)</sup> Regioisomers were not separable at the stage of cycloadduct **13b**. However, the corresponding isomeric ketones obtained by acid hydrolysis were separable, and the structures were determined by NMR study.

<sup>(17)</sup> Steric size has been suggested to be in the following order: cyclohexyl > cyclopentyl > cyclobutyl. See: N. L. Frank, J. S. Siegel, In *Advances in Theoretically Interesting Molecules*; Thummel, R. P., Ed.; JAI Press Inc.: Greenwich, CT, 1995; Vol. 3, pp 209–260.

<sup>(18)</sup>  $Et_2O$  was a better solvent for the reaction of benzyne **12c**. When THF was used, the yield was lower (24%), albeit the regioselectivity was almost the same (5.1:1).

<sup>(19) (</sup>a) Streitwieser, A. Jr.; Ziegler, G. R.; Mowery, P. C.; Lewis, A.; Lawler, R. G. J. Am. Chem. Soc. **1968**, 90, 1357–1358. (b) Finnegan, R. A. J. Org. Chem. **1965**, 30, 1333–1335.

<sup>(20)</sup> This kind of reactivity is inherent in strained four-membered rings; see: Bassindale, A. R.; Eaborn, C.; Walton, D. R. M. J. Chem. Soc. B **1969**, 12. See also refs 6 and 17.



Figure 1.

than the  $C_2$  center. By contrast, the differences in these values in **12b** were less pronounced and were opposite in **12c** (Figure 2).



**Figure 2.** Natural atomic charges (above) and atomic populations of LUMO coefficients (below) at  $C_1$  and  $C_2$  calculated with the B3LYP/6-311G(d,p) method.

In line with this postulate, the regiochemical trend held in nucleophilic additions (Scheme 8). Reaction of benzyne **12a** with piperidine proceeded selectively (15a/16a = 4.8: 1) to give **15a** as the major product. By contrast, no regioselectivity was observed in the reaction of benzyne **12b**, and the nucleophilc attack to **12c** occurred in the opposite manner compared with the reaction of **12a** to give mainly **16c** (**16c/15c** = 1.9:1) in 85% combined yield. Note that the nitrogen is located at the position nearer to the sixmembered ring in the major product **16c**.

The same trend applied also to the corresponding [2 + 4] cycloaddition. Reaction of benzyne **12a** with 2-methoxy-

$$C_{\rm A}^{\rm LUMO} = \sum_{\rm B} \sum_{\mu \in {\rm A}} \sum_{\nu \in {\rm A}} C_{\mu}^{\rm LUMO} C_{\nu}^{\rm LUMO} S_{\mu\nu}$$

where  $C_{\mu}^{\text{LUMO}}$  is the LUMO coefficient of the atomic orbital  $\mu$  and  $S_{\mu\nu}$  is the overlap integral between atomic orbitals  $\mu$  and  $\nu$ . Variables  $\mu$  and  $\nu$  run the atomic orbitals belonging to atoms A and B in the summation, respectively. Calculations were carried out by using Gaussian 98 package. (*Gaussian 98*, Revision A.11.2; Gaussian, Inc.: Pittsburgh, PA, 2001.)



<sup>a</sup> Overall yields are given. Observed major products are shown.

furan proceeded regioselectively to give cycloadduct **17a** as a major product (4.0:1). In contrast, virtually no regioselectivity was observed in the reaction of benzyne **12b**, giving a regioisomeric mixture of **17b** and **18b** (1.4:1) in 79% combined yield. Interestingly, **12c** showed an opposite tendency, albeit with poor regioselectivity, to give cycloadduct **18c** as a major product (**18c/17c** = 1.4:1).

In summary, a four-membered ring fused to a benzyne has a sizable directing effect for the regioselective reactions with ketene silyl acetals, nucleophiles, and  $\alpha$ -alkoxyfuran. Such findings open an opportunity for selective syntheses of various interesting aromatic compounds. Further studies are currently underway in our laboratories.

**Acknowledgment.** We thank Prof. Jay S. Siegel, UCSD, for helpful discussions. Thanks are also due to 21st Century COE program for partial financial support.

Supporting Information Available: General procedures and spectral data for compounds 4-10 and 13-18. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034877P

<sup>(21)</sup> Atomic population of the lowest unoccupied molecular orbital (LUMO) on atom A can be defined as